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Approximating chaotic time series through unstable periodic orbits
T. L. Carroll

Code 6343, Naval Research Lab, Washington, DC 20375

There are many noise reduction methods for chaotic signals, but most only work

over a limited signal to noise range. If chaotic signals are to be used for communications,

noise reduction techniques which can handle larger amounts of noise (or deterministic

noise) are needed. I describe here a method of approximating a chaotic signal by

constructing possible sequences based on unstable periodic orbits. The approximation is

good enough to distinguish between chaotic attractors, even when large amounts of noise

are added to the chaotic signal.
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Introduction

There has been much work published on removing noise from chaotic signals [1-

7]. Much of this work was based on embedding the chaotic signal in a phase space in

order to eliminate noise. In general, phase-space based noise reduction techniques are

only good if one can embed the chaotic signal in phase space so that the a noise-corrupted

point in the phase space is not too far from its noise-free location. The noise reduction

techniques considered were usually limited to noise on the order of 10% of the amplitude

of the chaotic signal, although some techniques could handle noise as large as the chaotic

signal.

At the same time, chaos is being considered as a communications signal [8-18]. In

many situations, communications signals are subject to large amounts of additive noise.

There are spread-spectrum communications systems that can function when the noise is

1000 times as large as the signal [19]. "Noise" may include random noise, other chaotic

signals used as carriers by other transmitters, and multipath interference, which includes

delayed versions of the same chaotic signal. If chaotic signals are to be used for

communications, then noise reduction techniques are necessary that work when the signal

to noise ratio is much less than 1 or the noise is deterministic.

Previous noise reduction techniques have focused on recovering an exact copy of

the original chaotic signal. For some applications, it might be useful just to approximate

the original chaotic signal, as long as the approximation recovered some useful property

of the chaotic signal, such as which attractor the chaotic system was in.  In this paper, I

use unstable periodic orbits to approximate a chaotic signal. Although there are an

infinite number of unstable periodic orbits in a chaotic attractor, many properties of the

chaotic attractor may be recovered from only the lowest period orbits [20-26]. It is

possible to construct an approximate skeleton of the chaotic attractor by stringing

together unstable periodic orbits. The skeleton will not be exact because the chaotic

system may be on some orbits only for a short time, but the skeleton may be good enough
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for some purposes. This procedure will work better if the chaotic system stays near each

unstable periodic orbit long enough that it completes a full cycle of the orbit, making it

easier to identify the orbit.

Basic method

The basic procedure I use is as follows: 1) Extract low period unstable periodic

orbits from the chaotic system. Any of the known methods for extracting unstable

periodic orbits will work for this [21, 25, 27]. I usually use the method of close returns

applied to a chaotic time series [25]. If an unstable period orbit is so unstable that it does

not show up in the time series, then it will not contribute to making a good approximation

to the signal. Fig. 1, for example, shows the first 5 unstable periodic orbits for the Lorenz

system of eq. (1).

2) Piece together individual unstable periodic orbits to create longer periodic orbit

sequences. First, one must decide how to match up unstable periodic orbits, i. e. how

could one orbit lead into the next. The most general way to do this would be first to

choose a point on orbit A to be the final point on that orbit. The final point on orbit A,

call it x0  ,  is a new initial condition. Using knowledge of the dynamics, it should be

possible to predict the future trajectory from point x0 . Next, assume some small error in

x0 . This small error can lead to a range of possible values for the point that comes one

timestep after x0 . The initial point on orbit B, the unstable periodic orbit that follows

orbit A, should be within this range. I  use this prediction method below with the logistic

map, although in practice a simpler method may be used with flows. I describe the

simpler method in the section below on the Lorenz system.

Some (or many) of these periodic orbit sequences may not actually show up in a

time series signal. One may compare (as shown below) the periodic orbit sequences with

many time series signals to see which sequences are actually present as good

approximations to the time series. Periodic orbit sequences that are never useful as

approximations to the time series may be eliminated from consideration.
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 3) Take all periodic orbit sequences of a given length. Compare all of these

sequences with an equal length piece of the chaotic time series. I use a cross-correlation

to compare. I first subtract the mean value from the time series signal and from each

individual periodic orbit sequence, so that all signals are zero mean. I calculate the cross-

correlation between each sequence and the piece (or segment) of the time series. The

cross-correlation is normalized so that the largest possible value is 1, which occurs for

identical signals. I take the sequence with the largest cross-correlation to be the best

approximation to the piece of the chaotic time series. I then repeat this procedure for the

next segment of the chaotic time series. It is necessary to match the phase of the periodic

orbit sequence to the phase of the time series segment, but this is easily done by using

FFT techniques to compute the cross-correlation [28].

Cross-correlation is commonly used in standard spread-spectrum systems [19,

29]. To be rigorous, cross-correlation techniques are used with a set of orthogonal time

series, so that the cross correlation between the time series is zero. In the examples

presented in this paper, the signals are not actually orthogonal. The cross-correlation

between two signals is not zero for these short sequences. Nevertheless, the cross

correlation between two identical periodic orbit sequences will be one. Because a chaotic

system has a one or more positive Lyapunov exponents, the cross correlation between

non-identical sequences will be less than one, so it is possible to distinguish between

periodic orbit sequences using cross-correlation. The accuracy of the cross-correlation

calculation will increase as the sequence length increases and decrease as the noise level

increases.

 There is a trade-off in extracting a signal from noise: the longer the sequences,

the more of them there are to be compared. The number of sequences should increase

roughly exponentially with their length. I show below that not all periodic orbit

sequences that I construct actually occur in the attractor, so it should be possible to limit

the increase in the number of sequences that need to be considered. It may be that work
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on classifying chaotic attractors using grammars  [30] or templates [31] may help limit

the number of sequences under consideration.

Lorenz system

I start with the Lorenz system as an example. The Lorenz equations I use here are

dx

dt
y x

dy

dt
xz x y

dz

dt
xy z

= −( )

= − + −

= −
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.                                                         (1).

The equations were integrated with a 4-th order Runge-Kutta integration routine with a

time step of 0.028.

I found the periodic orbits for the Lorenz system up to period 4 using a Newton-

Raphson algorithm [32]. Figure 1 shows an x-y projection for each of these orbits. As can

be seen, there are only a few basic types of motion for the Lorenz system. We see motion

about one center, motion about both centers, or combinations. Motion around one center

or around 2 centers occurs at incommensurate frequencies, so these orbits are not true

period 1,2,3 and 4 orbits, but I will label them as such for convenience. The length of the

period 2 orbit is close to twice the length of the period 1 orbit, the length of the period 3

orbit is close to 3 times the length of the period 1 orbit, and so on.

As an example of the lack of cross-correlation between different periodic orbits, I

constructed sequences consisting only of the x component of the period 2 and the period 3

orbits. I shifted the phase of one of the sequences to find the maximum of the cross-

correlation function between the two sequences. When the two sequences were 4 cycles

long, the maximum of the cross-correlation was 0.49. When the two sequences were 8

cycles long, the maximum of the cross-correlation was 0.24.

The unstable periodic orbits for the Lorenz system may be combined into periodic

orbit sequences. In order to combine the orbits into sequences using the prediction
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method described above, it is necessary to know x, y and z points at the end of each

unstable periodic orbit. Because the Lorenz system is a flow, however, there is a simpler

approximate method to combine unstable periodic orbits into sequences. A flow system

changes continuously  from one time step to the next, so one may attempt to combine

orbits by making the sequence roughly continuous from the end of one unstable periodic

orbit to the beginning of the next. One may choose a particular arbitrary value of the

signal to match orbit A and orbit B(in a periodic system, this would be the same as

matching the phases of the two orbits).  For example, one may use the point where the

orbit crosses zero going in the positive direction as the matching point. If the orbit does

not cross zero, one may use the point where the orbit most closely approaches zero.

Figure 2 shows an example of a sequence consisting of a period 1, period 2 and period 1

orbit, all from the x variable of the Lorenz system. The arbitrary matching condition does

lead to some glitches, as can be seen in Fig. 2, but the resulting sequence is good enough

for an approximation.

All possible periodic orbit sequences up to a certain length are constructed. The

dynamics of the particular dynamical system may limit which periodic orbit sequences

are possible. In the Lorenz system, for example, the x variable is symmetric about zero.

For any periodic orbit, both the orbit and its inverse may be used to construct a periodic

orbit sequence. The period 1 orbit, however, does not cross the origin, as can be seen in

Fig. 1. One could not have a sequence consisting of the period 1 orbit followed by its

inverse because the Lorenz system cannot cross zero while in a period 1 orbit. It might be

possible, on the other hand, to have a period 1 orbit, a period 2 orbit, and then the inverse

of the period 1 orbit.

Some orbits have several zero crossing points, so there are several possible phases

in which the orbit may enter into a periodic sequence. The period 3 orbit, for example,

has 2 possible phases. Periodic orbit sequences of a given length are constructed by

combining all unstable periodic orbits and their inverses in all possible phases,
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eliminating combinations obviously not allowed by the dynamics. For the Lorenz system,

there were 49 possible sequences of length 4, such as period 1+ period 3, period 2+period

1 + period 1, a single period 4, etc.  The 49 possible period 4 sequences were then

combined to produce 2401 sequences of length 8.

I then calculated the cross correlation between each periodic orbit sequence and

an equal length segment from a Lorenz x time series, subtracting the mean,  normalizing

and checking for the proper phase as above.  I took the sequence that yielded the largest

product to be the best approximation to that segment of the Lorenz x time series.

Figure 3 shows the results of fitting sequences to a Lorenz time series from the x

variable. Figure 3(a) is the original Lorenz time series before the mean has been

subtracted. Figure 3(b) is an approximation using sequences of length 8 (the mean value

has been added back in for the figure). Figure 3(c) is an approximation when a Gaussian

white noise signal with an RMS value of 20 has been added to the original Lorenz signal.

The RMS of the Lorenz signal is 12.7, so the RMS signal to noise ratio was near 0.5, but

the approximation was still good.

In an attempt to reduce the computational burden, I took 1000 period 4 segments

from a Lorenz x time series from eq. (1) and fit each one with one of the 49 possible

period 4 sequences. Some of the period 4 sequences were not used, so I eliminated these

sequences. I then built period 8 sequences by combining the remaining period 4

sequences. As a result, I was left with 961 period 8 sequences, a reduction by a factor of

almost 3 in the total number of sequences that I needed to consider. One might also

consider eliminating sequences that are not used very often. The quality of the

approximation might suffer, but the computation time could be reduced.

Circuit data

I used data from an electronic circuit to see if this approximation technique could

work with real data. The circuit was similar to a circuit described in [33]. The circuit was

described by the equations:
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with α = 104, β  = 1.88, µ  = 0.635, m1 = -0.5,  and m2 = 0.5, Figure 4(a) shows a time

series of the w signal from the circuit, digitized at 100,000 points/sec.

I digitized all 4 signals from the circuit and used the method of close approaches

to find periodic orbits up to period 4. As with the Lorenz system, I then constructed all

possible sequences up to length 8 using the w signal. For this system, there were 768 such

sequences. There are fewer sequences than for the Lorenz system because the circuit must

encounter a period 4 orbit for the w signal to cross zero. In the Lorenz system, the x signal

could cross zero on a period 2 orbit.

Figure 4(a) shows the w time series from the circuit. Figure 4(b) shows the

approximation to the circuit w time series. There are places where the approximation

good and places where the approximation is not as good. Between 8 and 10 ms, it appears

that the circuit spirals in to an unstable fixed point and then shoots out. This motion does

not stay near any single low period unstable orbit,  so it is not well approximated.

Figure 4(c) shows the approximation to the time series when Gaussian white noise

with an RMS amplitude of 4 has been added to the original signal. The RMS amplitude of
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the w signal from the circuit is 1.99, so the signal to noise ratio is 0.5. The approximation

is not as good with the added noise, but the approximate signal is still usually on the same

side of zero as the original signal.

Sending a signal

If the approximation to the chaotic signal is to be useful, it must recover some

property of the chaotic signal that we can control. One property that the approximation

can pick up is which attractor the chaotic system is in. As a communications example, I

send either a signal from an asymmetric chaotic attractor or its inverse. Because the

attractor is not symmetric about zero, I can tell by fitting periodic orbits whether I am

sending the unaltered chaotic signal or its inverse.

For my test system, I used eq. (2) with α = 1, β  = 2.4 and µ  = 0.4. Eq. (2) was

integrated with a 4-th order Runge-Kutta integration routine with a time step of 0.02 .

Periodic orbits were found for the resulting attractor by using the method of close

approach. Eq. (2) was then integrated with a time step of 0.08 to produce a time series of

the x signal. The average value of the x signal (0.028) was subtracted from the x signal to

produce xa , which had zero mean. Sequences of length 8 periods based on unstable

periodic orbits up to period 4 were constructed as before, and their mean values were

subtracted. Figure 5 shows the zero mean x signal, xa.

To encode a signal, xa was multiplied by s = ±1. The sign of s was switched every

800 points, or about 26 cycles, to produce a communications signal xc = sxa . The

periodic orbit sequences and their inverses were fit to the time series as before. To

recover the signal s , I recorded whether the sequence that best fit each segment of the

time series was inverted or not. Figure 6(a) shows the value of s , while Fig. 6(b) shows s

recovered from the periodic orbit approximation to the time series. The magnitude of s

shown in Fig. 6(b) is the value of the cross correlation between the segment of the time

series and the periodic orbit sequence that best fit it.
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Noise does not destroy the ability to communicate. Figure 6(c) shows the

recovered value of s when Gaussian white noise with an RMS amplitude twice the RMS

amplitude of the corrected x signal was added to the x signal. The s signal is still

recovered accurately. Using longer sequences should allow signal recovery at lower

signal to noise ratios, although the computational burden will increase.

Other kinds of interference 

Multipath interference can also degrade communications signals. Multipath

interference occurs when the communications signal is reflected from buildings or other

objects. The reflections arrive at the receiver at a later time because they travel a different

path. If the time delay is a half integral number of periods of the carrier signal, the

interference can cancel out most of the received signal. The interfering signal is also

difficult to separate from the received signal because it is at the same frequency.

As a test of multipath interference, I delayed and attenuated the communications

signal xc to produce the signal Axc(τ  ), where A is an amplitude multiplier and τ  was the

delay time. I added these signals together to produce xc + Axc(τ ).

I used delays of 1/2 data period (800 points, about 13 cycles) and 1/2 cycle (about

60 points). In both cases, I could recover the information signal s for amplitude

multipliers A up to 0.8.

I also tested the effect of periodic interference on the communications signal. The

power spectrum of the x signal from eq. (2) has a large peak at about 0.42 Hz,

corresponding approximately to the frequency of 1 cycle. I added a sine wave at this

frequency to the communications signal xc . Again I used periodic orbit sequences of

length 8 to recover the information signal s . I was able to recover the information signal

when the sine wave RMS amplitude was up to about 3/4 of the RMS amplitude of the

communications signal. Using longer sequences should allow for recovery at lower signal

to noise ratios.

Maps
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It is natural to attempt this sort of approximation in maps. In a map, a period 2

orbit is really 2 steps long, not 30 steps as in our last example, so computation time

should be speeded up. I used the logistic map:

x x xn n n+ = −( )1 4 1                                                                   (3)

which I iterated with 64 bit precision. I then found periodic orbits up to period 8 for the

map.

I created longer sequences from orbits up to period 8. I used all possible phases of

each orbit in making my sequences. The prediction method described above was used to

determine which orbits could follow each other. At the end of each orbit, I extrapolated

the next point on the orbit using eq. (3). In constructing sequences, I followed each orbit

only with another orbit whose first point was within some tolerance of the extrapolated

point from the previous orbit. By observing the behavior of the map, I set this tolerance at

0.1.

All sequences of length 8 were combined to create sequences of length 16. I found

18,601 such sequences. In order to lessen the computational time, I then checked which

sequences of length 8 were actually likely to show up in the map. The map was iterated

for 10,000 segments of length 8, and I recorded which orbit sequence was the best fit. As

before, the mean was subtracted from each periodic orbit sequence before the cross-

correlation calculation.  Many periodic orbit sequences were never the best fit, so they

could be eliminated from consideration. I then combined this reduced set of length 8

sequences into sequences of length 16. There were now only 650 sequences of length 16,

a reduction by a factor of 28 in the number of sequences needed. Figure 7(a) shows a time

series from the map of eq. (3), while Fig. 7(b) shows an approximation to that time series

using unstable periodic orbits (the mean value has been restored for the figure).

The logistic map also worked in a simple communications scheme. I first

subtracted the average value from a time series from the logistic map to produce a time
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series with zero mean. I then multiplied the zero mean time series by an information

signal s = ±1 to produce a communications signal. The sign of s flipped every 48 map

iterations. The communications signal was then approximated  with periodic orbit

sequences of length 16. The approximation revealed whether the communications signal

was inverted or not. The sign of s was successfully recovered when I added to the

communications signal a Gaussian white noise signal with an RMS amplitude half that of

the communications signal. It should be possible to recover s from higher noise levels by

using longer periodic orbit sequences, although there will then be more sequences to

compare to.

Conclusions

I have described communications systems with two symbols, ±1. It should be

possible to create signals with more symbols by using more different attractors. Even

with large noise levels, the periodic orbit approximation can distinguish between different

chaotic attractors. The periodic orbit approximation technique should be useful even

when there are other chaotic signals interfering with the desired signal.

The weakest point of using periodic orbit sequences to approximate chaotic

signals is the amount of computation needed. By using long enough sequences, it is in

principle possible to extract a chaotic communications signal from very large amounts of

noise, but the number of periodic orbit sequences increases exponentially with sequence

length. It may be possible to limit the number of sequences by eliminating periodic orbit

sequences that do not naturally occur, or by using the communication scheme of Hayes

[13], where the transmitter is controlled to produce specific sequences of unstable

periodic orbits.

Improved techniques for searching for the best fit among the periodic orbit

sequences could also speed up the calculation. It should be possible to calculate cross-

correlations between all periodic orbit sequences. The periodic orbit sequences could then

be grouped in a tree structure according to how closely they were correlated with each
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other. Searching for the best fit periodic orbit sequence would then be a matter of

searching through the tree, which should be considerable faster than comparing to every

orbit. Another possible improvement is to check the most often used periodic obits

sequences first, and use the first sequence for which the cross-correlation exceeds some

threshold.
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Figure Captions
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Fig. 1. Unstable periodic orbits for the Lorenz system of eq. (1). (a) is period 1,

(b) is period 2, (c) is period 3, (d) and (e) are period 4.
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Fig. 2. Sample of a periodic orbit sequence for the Lorenz system of eq. (1). The

sequence consists of a period 1 orbit followed by a period 2 orbit and then another period

1 orbit.
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Fig. 3. (a) is the x signal from eq. (1), (b) is xf an approximation to the x signal

constructed from sequences of unstable periodic orbits, and (c) is the same approximation

when Gaussian white noise twice as large as the x signal has been added to the x signal.

While the approximation in (c) does not look that good, it is usually on the same side of

zero as the time series in (a), so some topological properties are still captured.
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Fig. 4. (a) is a signal w from a 4-d circuit described in eq. (2), (b) is an

approximation wf to the w signal, constructed from sequences of unstable periodic orbits,

and (c) is the same approximation when Gaussian white noise twice as large as the w

signal has been added to the w signal. Note the poor approximation between t=8 and 10

ms, when the circuit is not near an unstable periodic orbit.
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Fig. 5. Zero mean signal xa from the a simulation of eq. (2) with α = 1, β  = 2.4

and µ  = 0.4.
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Fig. 6. (a) is a communications signal s used to modulate the carrier signal of Fig.

4. (b) is the recovered modulation signal sf . The magnitude of xf is the cross correlation

between the modulated communications signal xc and its periodic orbit approximation.

(c) is the recovered modulation signal sf when a Gaussian white noise signal twice as

large as the communications signal xc has been added to the communications signal.
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Fig. 7. (a) is the signal x(n) from the logistic map of eq. 3. (b) is an approximation

to the logistic map signal using periodic orbit sequences of length 16.


